
 APPLICATION NOTE

R01AN1818EJ0300 Rev. 3.00 Page 1 of 19
Feb. 28, 2017

RX Family
DAC Module Using Firmware Integration Technology
Introduction
This module supports the DAC peripheral on the RX111, RX113, RX130, RX210, RX230, RX231, RX23T, RX24T,
RX24U, RX63N, RX631, RX64M, RX65N, RX651 and RX71M. The API is identical for the 8-, 10-, and 12-bit
converters. Channels are operated individually and all hardware features are supported.

Target Devices
The following is a list of devices that are currently supported by this API:

• RX111, RX113 Groups

• RX130 Group

• RX210 Group

• RX230, RX231 Groups

• RX23T Group

• RX24T Group

• RX24U Group

• RX631, RX63N Groups

• RX64M Group

• RX651, RX65N Groups

• RX71M Group

When using this application note with other Renesas MCUs, careful evaluation is recommended after making
modifications to comply with the alternate MCU.

Related Documents

• Firmware Integration Technology User’s Manual (R01AN1833)

• Board Support Package Firmware Integration Technology Module (R01AN1685)

• Adding Firmware Integration Technology Modules to Projects (R01AN1723)

• Adding Firmware Integration Technology Modules to CS+ Projects (R01AN1826)

R01AN1818EJ0300
Rev. 3.00

Feb. 28, 2017

RX Family DAC Module Using Firmware Integration Technology

R01AN1818EJ0300 Rev. 3.00 Page 2 of 19
Feb. 28, 2017

Contents

1. Overview ... 3

2. API Information ... 3
2.1 Hardware Requirements ... 3
2.2 Hardware Resource Requirements ... 3
2.2.1 DA, DAa, R12DA, R12DAA ... 3
2.2.2 GPIO .. 3

2.3 Software Requirements ... 3
2.4 Limitations ... 3
2.5 Supported Toolchains ... 3
2.6 Header Files .. 4
2.7 Integer Types .. 4
2.8 Configuration Overview ... 4
2.9 Code Size .. 5
2.10 API Data Structures .. 5
2.11 Adding Driver to Your Project.. 5

3. API Functions .. 6
3.1 Summary ... 6
3.2 Return Values ... 6
3.3 R_DAC_Open() ... 7
3.4 R_DAC_Close() .. 10
3.5 R_DAC_Write() ... 11
3.6 R_DAC_Control() .. 12
3.7 R_DAC_GetVersion() .. 14

4. Demo Projects ... 15
4.1 dac_demo_rskrx113 .. 15
4.2 dac_demo_rskrx231 .. 16
4.3 dac_demo_rskrx64m ... 16
4.4 dac_demo_rskrx71m ... 17
4.5 Adding a Demo to a Workspace ... 18

RX Family DAC Module Using Firmware Integration Technology

R01AN1818EJ0300 Rev. 3.00 Page 3 of 19
Feb. 28, 2017

1. Overview
This DAC driver supports the DAC peripheral on the RX111, RX113, RX130, RX210, RX230, RX231, RX23T,
RX24T, RX24U, RX63N, RX631, RX64M, RX65N, RX651 and RX71M. The hardware functionality is detailed in the
D/A Converter chapter in the User’s Manual: Hardware for each MCU.

Data to convert to analog may be either left or right justified, and channels can be output independently. MCU-specific
hardware features are also supported. This includes selecting the reference voltage, synchronizing conversions with the
ADC peripheral, disabling conversions when the output is disabled, and enabling an internal amplifier for larger loads.

2. API Information
The sample code in this application note has been run and confirmed under the following conditions.

2.1 Hardware Requirements
This driver requires that your MCU support the following features:

• DA, DAa, R12DA, or R12DAA digital-to-analog converters.

2.2 Hardware Resource Requirements
This section details the hardware peripherals that this driver requires. Unless explicitly stated, these resources must be
reserved for the driver, and the user cannot use them.

2.2.1 DA, DAa, R12DA, R12DAA
This driver makes use of all features on these peripherals.

2.2.2 GPIO
This driver utilizes port pins corresponding to each individual channel. These pins may not be used for GPIO.

2.3 Software Requirements
This driver is dependent upon the following packages:

• Renesas Board Support Package (r_bsp).

2.4 Limitations
No software limitations.

2.5 Supported Toolchains
This driver is tested and working with the following toolchains:

• Renesas RX Toolchain v.2.02.00 (RX111, RX113, RX210, RX231, RX631, RX63N, RX64M, RX71M)

• Renesas RX Toolchain v.2.03.00 (RX130, RX23T, RX230, RX24T)

• Renesas RX Toolchain v.2.05.00 (RX24U, RX651, RX65N)

• Renesas RX Toolchain v.2.06.00 (RX24U)

RX Family DAC Module Using Firmware Integration Technology

R01AN1818EJ0300 Rev. 3.00 Page 4 of 19
Feb. 28, 2017

2.6 Header Files
All API calls and their supporting interface definitions are located in “r_dac_rx_if.h”.

Build-time configuration options are selected or defined in the file “r_dac_rx_config.h”.

Both of these files should be included by the user’s application.

2.7 Integer Types
This project uses ANSI C99 “Exact width integer types” in order to make the code clearer and more portable. These
types are defined in stdint.h.

2.8 Configuration Overview
This driver uses the equate DAC_CFG_PARAM_CHECKING_ENABLE to remove parameter checking from the API
functions and reduce overall code size.

Configuration options in r_dac_rx_config.h

#define DAC_CFG_PARAM_CHECKING_ENABLE
1

If this equate is set to 1, parameter checking is included
in the build. If the equate is set to 0, the parameter
checking is omitted from the build and code size is
reduced. Setting this equate to
BSP_CFG_PARAM_CHECKING_ENABLE utilizes
the system default setting.

RX Family DAC Module Using Firmware Integration Technology

R01AN1818EJ0300 Rev. 3.00 Page 5 of 19
Feb. 28, 2017

2.9 Code Size

Typical code sizes associated with this module are listed below. Information is listed for a single representative device
of the RX100 Series, RX200 Series, and RX600 Series, respectively.
The ROM (code and constants) and RAM (global data) sizes are determined by the build-time configuration options
described in 2.8, Configuration Overview. The table lists reference values when the C compiler’s compile options are
set to their default values, as described in 2.5, Supported Toolchains. The compile option default values are
optimization level: 2, optimization type: for size, and data endianness: little-endian. The code size varies depending on
the C compiler version and compile options.

ROM, RAM and Stack Code Sizes

Device Category Memory Used Remarks

With Parameter
Checking

Without Parameter
Checking

RX130 ROM 319 bytes 285 bytes

RAM 0 byte 0 byte

Maximum stack usage 20 bytes R_DAC_Open function used

RX231 ROM 338 bytes 289 bytes

RAM 0 byte 0 byte

Maximum stack usage 20 bytes R_DAC_Open function used

RX65N ROM 403 bytes 359 bytes

RAM 0 byte 0 byte

Maximum stack usage 20 bytes R_DAC_Open function used

2.10 API Data Structures
The API data structures are located in the file “r_dac_rx_if.h” and discussed in Section 3.

2.11 Adding Driver to Your Project
The FIT module must be added to each project in the e2 studio.

You can use the FIT plug-in to add the FIT module to your project, or the module can be added manually.

It is recommended to use the FIT plug-in as you can add the module to your project easily and also it will automatically
update the include file paths for you.

To add the FIT module using the plug-in, refer to chapter 2. “Adding FIT Modules to e2 studio Projects Using FIT Plug-
In” in the “Adding Firmware Integration Technology Modules to Projects” application note (R01AN1723).

To add the FIT module manually, refer to chapter 3. “Adding FIT Modules to e2 studio Projects Manually” in the
“Adding Firmware Integration Technology Modules to Projects (R01AN1723)”

When using the FIT module, the BSP FIT module also needs to be added. For details on the BSP FIT module, refer to
the “Board Support Package Module Using Firmware Integration Technology” application note (R01AN1685).

RX Family DAC Module Using Firmware Integration Technology

R01AN1818EJ0300 Rev. 3.00 Page 6 of 19
Feb. 28, 2017

3. API Functions
3.1 Summary
The following functions are included in this design:

Function Description

R_DAC_Open() Applies power to the DAC peripheral, initializes the associated registers, and
configures MCU-specific options.

R_DAC_Close() Removes power to the DAC peripheral.

R_DAC_Write() Writes data to channel register for conversion.

R_DAC_Control() Enables or disables channel output. Enables or disabled internal amplifier (RX64M
and RX71M).

R_DAC_GetVersion() Returns at runtime the driver version number.

3.2 Return Values
Below are the different error codes API functions can return. This enum is found in r_dac_rx_if.h along with the API
function declarations.

/* DAC API ERROR CODE DEFINITIONS */
typedef enum e_dac_err
{
 DAC_SUCCESS=0,
 DAC_ERR_BAD_CHAN, // non-existent channel number
 DAC_ERR_INVALID_CMD, // non-existent operation command
 DAC_ERR_INVALID_ARG, // argument is not valid for parameter
 DAC_ERR_NULL_PTR, // received null ptr; missing required argument
 DAC_ERR_LOCK_FAILED, // failed to lock DAC module (module already open)
 DAC_ERR_UNLOCK_FAILED // failed to unlock DAC module
 DAC_ERR_ADC_NOT_POWERED, // cannot sync because ADC is not powered
 DAC_ERR_ADC_CONVERTING // cannot sync because ADC is converting
} dac_err_t;

RX Family DAC Module Using Firmware Integration Technology

R01AN1818EJ0300 Rev. 3.00 Page 7 of 19
Feb. 28, 2017

3.3 R_DAC_Open()
This function applies power to the DAC module, initializes the associated registers, and configures MCU-specific
options.

Format
dac_err_t R_DAC_Open(dac_cfg_t * p_cfg);

Parameters
p_cfg
 Pointer to the configuration structure

Sample structure used for p_cfg:
typedef struct st_dac_cfg
{
 bool fmt_flush_right; // all MCUs
 bool sync_with_adc; // RX113/RX130/RX230/RX231/

// RX24U/RX63N/RX631/RX64M/
// RX65N/RX651/RX71M

 uint8_t sync_unit; // 0 or 1; RX64M/RX71M
 // RX65N/RX651
 bool ch_conv_off_when_output_off; // RX210/RX63N/RX631/RX64M/

 // RX65N/RX651/RX71M
 dac_refv_t ref_voltage; // RX113/RX230/RX231
} dac_cfg_t;

typedef enum e_dac_refv // DAC reference voltage
{
 DAC_REFV_AVVC0_AVSS0 = 1,
 DAC_REFV_INTERNAL_AVSS0 = 3,
 DAC_REFV_VREFH_VREFL = 6
} dac_refv_t;

Return Values
DAC_SUCCESS: Successful; DAC initialized
DAC_ERR_NULL_PTR: p_cfg pointer is NULL
DAC_ERR_LOCK_FAILED: Failed to lock DAC module; already opened
DAC_ERR_INVALID_ARG: Invalid unit number for sync_unit
DAC_ERR_ADC_NOT_POWERED: Cannot sync because ADC is not powered
DAC_ERR_ADC_CONVERTING: Cannot sync because ADC is converting

Properties
Prototyped in file “r_dac_rx_if.h”

Description
This function applies power to the DAC module, initializes the associated registers, and configures MCU-specific
options.

Reentrant
No.

RX Family DAC Module Using Firmware Integration Technology

R01AN1818EJ0300 Rev. 3.00 Page 8 of 19
Feb. 28, 2017

Example
 dac_err_t err;
 dac_cfg_t config;

 /* Initialize RX63N DAC */
 config.fmt_flush_right = true;
 config.sync_with_adc = false;
 config.ch_conv_off_when_output_off = true;
 err = R_DAC_Open(&config);

Special Notes:
Data must be left or right justified by the application. The “fmt_flush_right” parameter just tells the DAC how to
interpret the data.

To avoid a “DAC_ERR_ADC_CONVERTING”, open the DAC module after the ADC is opened but before scanning
has begun on the ADC.

The DAC I/O pins must be configured prior to calling this function. An example initialization follows:

 R_BSP_RegisterProtectDisable(BSP_REG_PROTECT_MPC); // unlock

#ifdef BSP_MCU_RX113
 /*
 * Per Note 1 below Table 19.1 Allocation of Pin Functions to Multiple

* Pins (10/10) in the RX113 Group User's Manual: Hardware:
 * Select general input (by setting the Bm bits for the given pin in the
 * PDR and PMR for the given port to 0) for the pin if this pin function
 * is to be used.
 */
 PORTJ.PDR.BIT.B0 = 0;
 PORTJ.PMR.BIT.B0 = 0;
 PORTJ.PDR.BIT.B2 = 0;
 PORTJ.PMR.BIT.B2 = 0;

 /* Set the pin function for PJ0 & PJ2 to be used as DAC analog output pins. */
 MPC.PJ0PFS.BIT.ASEL = 1;
 MPC.PJ2PFS.BIT.ASEL = 1;

 /*
 * Uncomment the two lines below if you want to use VREFH/VREFL for the DAC
 * reference voltage.
 */
 //MPC.P41PFS.BIT.ASEL = 1; // Configure P41 as a VREFH analog pin
 //MPC.P42PFS.BIT.ASEL = 1; // Configure P42 as a VREFL analog pin

#else /* RX111, RX210, RX63N */

 /* Configure I/O port pins for analog outputs as general input pins.
 PORT0.PDR.BIT.B3 = 0;
 PORT0.PMR.BIT.B3 = 0;
 PORT0.PDR.BIT.B5 = 0;
 PORT0.PMR.BIT.B5 = 0;

 /* Set the pin function for P03 & P05 to be used as DAC analog output pins. */
 MPC.P03PFS.BIT.ASEL = 1;
 MPC.P05PFS.BIT.ASEL = 1;

#endif

 R_BSP_RegisterProtectEnable(BSP_REG_PROTECT_MPC); // lock

RX Family DAC Module Using Firmware Integration Technology

R01AN1818EJ0300 Rev. 3.00 Page 9 of 19
Feb. 28, 2017

Note when using an amplifier
When using an amp, set true in ch_conv_off_when_output_off.

Note when using the A/D converter
When the D/A A/D synchronous conversion (sync_with_adc = true) is enabled, if the A/D converter (1) is to be placed
in the module stop state, first, execute the R_DAC_Close function.

Note 1. The intended A/D converter is unit 1 for RX64M/RX651/RX65N/RX71M and unit 2 for RX24U.

RX Family DAC Module Using Firmware Integration Technology

R01AN1818EJ0300 Rev. 3.00 Page 10 of 19
Feb. 28, 2017

3.4 R_DAC_Close()
This function removes power from the DAC peripheral.

Format
dac_err_t R_DAC_Close(void);

Parameters
none

Return Values
DAC_SUCCESS: Successful; channels closed
DAC_ERR_UNLOCK_FAILED: Failed to unlock DAC module

Properties
Prototyped in file “r_dac_rx_if.h”

Description
Disables DAC channel output and powers down the peripheral.

Reentrant
No.

Example
 :
 /* Initialize DAC Peripheral */
 err = R_DAC_Open(&config);
 :
 :
 /* Shut down DAC Peripheral */
 err = R_DAC_Close();

Special Notes:
When the D/A A/D synchronous conversion (sync_with_adc = true) is enabled, if the A/D converter (1) is to be placed
in the module stop state, first, execute the R_DAC_Close function.

Note 1. The intended A/D converter is unit 1 for RX64M/RX651/RX65N/RX71M and unit 2 for RX24U.

RX Family DAC Module Using Firmware Integration Technology

R01AN1818EJ0300 Rev. 3.00 Page 11 of 19
Feb. 28, 2017

3.5 R_DAC_Write()
This function writes data to channel data register.

Format
dac_err_t R_DAC_Write(uint8_t const chan, uint16_t data);

 Parameters
chan
 Channel to write to
data
 Data to write

Return Values
DAC_SUCCESS: Data written to channel register successfully
DAC_ERR_BAD_CHAN: Non-existent channel number

Properties
Prototyped in file “r_dac_rx_if.h”

Description
Writes data to the channel register for conversion. Depending upon the MCU, this data may be 8-, 10-, or 12-bits in
length. The data must be aligned properly for the selected format before issuing a Write().

Reentrant
Function is re-entrant for different channels.

Example
 dac_err_t err;
 uint16_t g_short;
 :
 :
 /* Write data for conversion to 0V on channel 1 */
 g_short = 0x0000;
 err = R_DAC_Write(DAC_CH1, g_short);

Special Notes:
None.

RX Family DAC Module Using Firmware Integration Technology

R01AN1818EJ0300 Rev. 3.00 Page 12 of 19
Feb. 28, 2017

3.6 R_DAC_Control()
This function is used to enable/disable channel features.

Format
dac_err_t R_DAC_Control(uint8_t const chan, dac_cmd_t const cmd);

 Parameters
chan
 Channel to operate on
cmd
 Command to run (see enumeration below)

The cmd values are as follows:

typedef enum e_dac_cmd
{
 DAC_CMD_OUTPUT_ON, // Analog output of channel is enabled
 DAC_CMD_OUTPUT_OFF, // Analog output of channel is disabled

 DAC_CMD_AMP_ON, // RX64M/RX71M: Gain of 1 amplifier. See Electrical
 DAC_CMD_AMP_OFF, // Characteristics in User's Manual: Hardware.

 DAC_CMD_END_ENUM
} dac_cmd_t;

Return Values
DAC_SUCCESS: Successful; channel initialized
DAC_ERR_BAD_CHAN: Non-existent channel number
DAC_ERR_INVALID_CMD: Invalid command

Properties
Prototyped in file “r_dac_rx_if.h”

Description
The output of conversion data written in data register by Write() function is enable by OUTPUT command while Amp
is enable by AMP command, The output permission must be set after enabling amp.

Reentrant
Function is re-entrant for different channels.

Example
 dac_cfg_t config;
 dac_err_t err;

 /* Initialize RX64M,RX71M DAC */
 config.fmt_flush_right = true;
 config.sync_with_adc = true;
 config.sync_unit = 1;
 config.ch_conv_off_when_output_off = true;

 err = R_DAC_Open(&config);

 /* Write data for 0V on channel 0 */
 err = R_DAC_Write(DAC_CH0, 0x0);

 /* Drive a larger load */
 err = R_DAC_Control(DAC_CH0, DAC_CMD_AMP_ON);
 /* It is necessary to wait more than 3us. */

RX Family DAC Module Using Firmware Integration Technology

R01AN1818EJ0300 Rev. 3.00 Page 13 of 19
Feb. 28, 2017

 /* Output converted data */
 err = R_DAC_Control(DAC_CH0, DAC_CMD_OUTPUT_ON);

 /* Write data for 3.3V on channel 0 */
 err = R_DAC_Write(DAC_CH0, 0x0FFF);

Special Notes:
Amp output is generated after R_DAC_Write(DAC_CHx, 0x0) is executed.
When amp out is in use (DAC_CMD_AMP_ON command running), set true in ch_conv_off_when_output_off.
When using an amp, follow the process below.

1. Execute DAC_CMD_AMP_ON command in R_DAC_Control function.
2. Execute DAC_CMD_OUTPUT_ON command in R_DAC_Control function
3. Wait more than 3.3us
4. Write D/A output value in R_DAC_Write function.

The DAC_CMD_OUTPUT_ON and DAC_CMD_OUTPUT_OFF commands must be executed while the A/D
converter (1) to be synchronized with is stopped when the D/A A/D synchronous conversion is enabled.

Note 1. For RX64M/RX651/RX65N/RX71M, unit 1 of the A/D converter is to be stopped, and for RX24U, unit 2 is to

be stopped. The other MCUs do not need to specify the unit to be stopped since they only have one unit.

RX Family DAC Module Using Firmware Integration Technology

R01AN1818EJ0300 Rev. 3.00 Page 14 of 19
Feb. 28, 2017

3.7 R_DAC_GetVersion()
This function returns the driver version number at runtime.

Format
uint32_t R_DAC_GetVersion(void)

Parameters
None

Return Values
Version number.

Properties
Prototyped in file “r_dac_rx.h”

Description
Returns the version of this module. The version number is encoded such that the top 2 bytes are the major version
number and the bottom 2 bytes are the minor version number.

Reentrant
Yes

Example
 uint32_t version;
 :
 version = R_DAC_GetVersion();

Special Notes:
This function is inline using the “#pragma inline” directive

RX Family DAC Module Using Firmware Integration Technology

R01AN1818EJ0300 Rev. 3.00 Page 15 of 19
Feb. 28, 2017

4. Demo Projects
Demo projects are complete stand-alone programs. They include function main() that utilizes the module and its
dependent modules (e.g. r_bsp). The standard naming convention for the demo project is <module>_demo_<board>
where <module> is the peripheral acronym (e.g. s12ad, cmt, sci) and the <board> is the standard RSK (e.g. rskrx113).
For example, s12ad FIT module demo project for RSKRX113 will be named as s12ad_demo_rskrx113. Similarly the
exported .zip file will be <module>_demo_<board>.zip. For the same example, the zipped export/import file will be
named as s12ad_demo_rskrx113.zip

4.1 dac_demo_rskrx113
This is a simple demo of the RX113 D/A Converter (R12DAA) for the RSKRX113 starter kit (FIT module “r_dac_rx”).
The demo uses the r_dac_rx API to enable, configure, and write to the DAC. A continuous loop is entered in which
low, medium, and high data values are written to DAC channel 1 for 1 second each. LED 0 (green) is lit when a low
value is written, LED 1 (orange) is lit when a medium value is written, and LED 2 (red) is lit when a high value is
written. See the “Notes for Measuring the DAC Channel 0/1 Output Signals” section below for details on accessing and
configuring the DAC output channel signals and reference voltages on the RSKRX113 board.

Setup and Execution
1. Compile and download the sample code.

2. Attach multimeter leads or oscilloscope probes to the DAC channel output pin(s) if desired.

3. Click ‘Reset Go’ to start the software. If PC stops at Main, press F8 to resume.

4. Set breakpoints and watch global variables

Boards Supported
RSKRX113

Notes For Measuring the DAC Channel 0/1 Output Signals
• DAC channel 0 (DA0) output uses I/O Port PJ0 which maps to pin 2 of the MCU.

Per the RSKRX113 schematic, DA0 shares pin 2 with switch 1 (SW1). To use pin 2 for the DA0 analog output
signal a 0 ohm resistor needs to be moved from R241 to R239. Once this has been done DA0 can be accessed via
header JA1_13 or J1_2. Note that once this link configuration change is made SW1 will not be usable.

• DAC channel 1 (DA1) output uses I/O Port PJ2 which maps to physical pin 100.

Per the RSKRX113 schematic, DA1 can be accessed via header JA1_14.

DA1 can also be accessed via J4_25.

• GROUND can be accessed via JA1_2 (pin 4 next to it is also a ground pin)

• The RX113 supports three possible DAC reference voltages via the DAVREFCR register:

1. AVCC0/AVSS0

On the RSKRX113 board, AVCC0/AVSS0 are connected to UC_VCC (typ. 3.3V) and GROUND,
respectively.

2. Internal reference voltage/AVSS0

Typically 1.4V and GROUND, respectively.

3. VREFH/VREFL

On the RSKRX113 board, VREFH/VREFL are not connected. They go to J4_18 (CON_VREFH) and J4_17
(CON_VREFL), respectively. In order to use VREFH/VREFL as the DAC reference voltage:

• I/O pins P41 & P42 must be configured via the MPC as analog pins.

• VREFH/VREEFL must be connected to high/low supply voltages:

Refer to the “DAC Configuration” section of the RSKRX113 User’s Manual (R20UT2762EJ0100) for
details on the option links for configuring these signals.

RX Family DAC Module Using Firmware Integration Technology

R01AN1818EJ0300 Rev. 3.00 Page 16 of 19
Feb. 28, 2017

• An alternative option is:

Connect J3_12 (GROUND) to J4_17 (CON_VREFL)

Connect J3_10 (UC_VCC, 3.3V) to J4_18 (CON_VREFH)

4.2 dac_demo_rskrx231
This is a simple demo of the RX231 D/A Converter (R12DAA) for the RSKRX231 starter kit (FIT module “r_dac_rx”).
The demo uses the r_dac_rx API to enable, configure, and write to the DAC. A continuous loop is entered in which
low, medium, and high data values are written to DAC channel 1 for 1 second each. LED 0 (green) is lit when a low
value is written, LED 1 (orange) is lit when a medium value is written, and LED 2 (red) is lit when a high value is
written. See the “Operation” notes below for details on accessing and configuring the DAC output channel signals and
reference voltages on the RSKRX231 board.

Setup and Execution
1. Compile and download the sample code.

2. Attach multimeter leads or oscilloscope probes to the DAC channel output pin(s) if desired.

3. Click ‘Reset Go’ to start the software. If PC stops at Main, press F8 to resume.

4. Set breakpoints and watch global variables

Boards Supported
RSKRX231

Notes For Measuring the DAC Channel 0/1 Output Signals
• DAC channel 0 (DA0) output uses I/O Port P03 which maps to pin 2 of the MCU. It can be accessed via J1_2.

• DAC channel 1 (DA1) output uses I/O Port P05 which maps to pin 100 of the MCU. It can be accessed via JA1_14
(or J4_25).

• GROUND can be accessed via JA1_2 (pin 4 next to it is also a ground pin)

• The RX231 supports three possible DAC reference voltages via the DAVREFCR register:

1. AVCC0/AVSS0

On the RSKRX231 board, AVCC0/AVSS0 are connected to UC_VCC (typ. 3.3V) and GROUND,
respectively.

2. Internal reference voltage/AVSS0

Typically 1.4V and GROUND, respectively.

3. VREFH/VREFL

On the RSKRX231 board, VREFH/VREFL are connected to UC_VCC (typ. 3.3V) and GND, respectively. To
connect an external reference voltage, CON_VREFH (J1_1) and CON_VREFL (J1_3) can be used after
moving the following 0 ohm resistors:

• For CON_VREFH move R68 to R67

• For CON_VREFL move R65 to R66

4.3 dac_demo_rskrx64m
This is a simple demo of the RX64M D/A Converter (R12DA) for the RSKRX64M starter kit (FIT module “r_dac_rx”).
The demo uses the r_dac_rx API to enable, configure, and write to the DAC. A continuous loop is entered in which
low, medium, and high data values are written to DAC channel 0 for 1 second each. LED 1 is lit when a low value is
written, LED 2 is lit when a medium value is written, and LED 3 is lit when a high value is written. See the “Operation”
notes below for details on accessing and configuring the DAC output channel signals on the RSKRX64M board.

RX Family DAC Module Using Firmware Integration Technology

R01AN1818EJ0300 Rev. 3.00 Page 17 of 19
Feb. 28, 2017

Setup and Execution
1. Compile and download the sample code.

2. Attach multimeter leads or oscilloscope probes to the DAC channel output pin(s) if desired.

3. Click ‘Reset Go’ to start the software. If PC stops at Main, press F8 to resume.

4. Set breakpoints and watch global variables

Boards Supported
RSKRX64M

Notes For Measuring the DAC Channel 0/1 Output Signals
• DAC channel 0 (DA0) output uses I/O Port P03 which maps to pin 4 of the MCU.

Per the RSKRX64M schematic, DA0 shares pin 4 with LED 0. To use pin 4 for the DA0 analog output signal a 0
ohm resistor needs to be moved from R277 to R189. Once this has been done DA0 can be accessed via header
JA1_13. Note that once this link configuration change is made LED 0 will not be usable.

• DAC channel 1 (DA1) output uses I/O Port P05 which maps to pin 2 of the MCU.

Per the RSKRX64M schematic, DA1 shares pin 2 with LED 1. To use pin 2 for the DA1 analog output signal a 0
ohm resistor needs to be moved from R280 to R188. Once this has been done DA1 can be accessed via header
JA1_14. Note that once this link configuration change is made LED 1 will not be usable.

• On the RSKRX64M board the DA reference voltage AVCC1 (VREFH) and AVSS1 (VREFL) are connected to
UC_VCC (typ. 3.3V) and GROUND, respectively.

4.4 dac_demo_rskrx71m
This is a simple demo of the RX71M D/A Converter (R12DA) for the RSKRX71M starter kit (FIT module “r_dac_rx”).
The demo uses the r_dac_rx API to enable, configure, and write to the DAC. A continuous loop is entered in which
low, medium, and high data values are written to DAC channel 0 for 1 second each. LED 1 is lit when a low value is
written, LED 2 is lit when a medium value is written, and LED 3 is lit when a high value is written. See the “Operation”
notes below for details on accessing and configuring the DAC output channel signals on the RSKRX71M board.

Setup and Execution
1. Compile and download the sample code.

2. Attach multimeter leads or oscilloscope probes to the DAC channel output pin(s) if desired.

3. Click ‘Reset Go’ to start the software. If PC stops at Main, press F8 to resume.

4. Set breakpoints and watch global variables

Boards Supported
RSKRX71M

Notes For Measuring the DAC Channel 0/1 Output Signals
• DAC channel 0 (DA0) output uses I/O Port P03 which maps to pin 4 of the MCU.

Per the RSKRX71M schematic, DA0 shares pin 4 with LED 0. To use pin 4 for the DA0 analog output signal a 0
ohm resistor needs to be moved from R277 to R189. Once this has been done DA0 can be accessed via header
JA1_13. Note that once this link configuration change is made LED 0 will not be usable.

• DAC channel 1 (DA1) output uses I/O Port P05 which maps to pin 2 of the MCU.

Per the RSKRX71M schematic, DA1 shares pin 2 with LED 1. To use pin 2 for the DA1 analog output signal a 0
ohm resistor needs to be moved from R280 to R188. Once this has been done DA1 can be accessed via header
JA1_14. Note that once this link configuration change is made LED 1 will not be usable.

• On the RSKRX71M board the DA reference voltage AVCC1 (VREFH) and AVSS1 (VREFL) are connected to
UC_VCC (typ. 3.3V) and GROUND, respectively.

RX Family DAC Module Using Firmware Integration Technology

R01AN1818EJ0300 Rev. 3.00 Page 18 of 19
Feb. 28, 2017

4.5 Adding a Demo to a Workspace
Demo projects are found in the FITDemos subdirectory of the distribution file for this application note. To add a demo
project to a workspace, select File>Import>General>Existing Projects into Workspace, then click “Next”. From the
Import Projects dialog, choose the “Select archive file” radio button. “Browse” to the FITDemos subdirectory, select
the desired demo zip file, then click “Finish”.

RX Family DAC Module Using Firmware Integration Technology

R01AN1818EJ0300 Rev. 3.00 Page 19 of 19
Feb. 28, 2017

Related Technical Updates
This module reflects the content of the following technical updates.
 None

Website and Support
Renesas Electronics Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/contact

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/contact

Revision Record

Rev.

Date

Description
Page Summary

1.00 Nov.15.13 — First edition issued
2.00 Apr.02.14 — Updated for new API and RX210 & RX63N/631 support
2.10 Sep.08.14 — Added RX64M support
2.20 Jan.20.15 — Added RX113 support
2.30 Mar.19.15 — Added RX71M support
2.40 Jun.30.15 — Added RX231 support
2.50 Sep.30.15 — Added RX23T support
2.60 Oct.1.15 — Added RX130 support
2.70 Dec.1.15 —

1, 5

3
3

7, 11

14

Added RX230 support
Changed the document number for the “Board Support
Package Firmware Integration Technology Module” application
note.
Changed the description in section 2.
Removed “DAA” from the required peripheral lists in sections
2.1 and 2.2.
Modified some code examples shown in the Parameters and
Example in sections 3.3 and 3.6.
Added “4. Demo Projects”.

2.80 Feb.1.16 —
18

Added RX24T support
Added “Related Technical Updates”.

2.91 Oct.1.16 —
5
8
11, 12

Added RX65N Group support
ROM,RAM and stack Code Sizes description change
Added The notice when using an amplifier
Description, Example change, Special Notes addition

3.00 Feb.28.17 —

3
9, 10, 13

Program

Added support for the RX24T (including ROM 512 KB version)
and RX24U Groups.
Added RXC v2.06.00 to “2.5 Supported Toolchains”.
3.3 R_DAC_Open(), 3.4 R_DAC_Close(), and
3.6 R_DAC_Control(): Added the note when enabling the D/A
A/D synchronous conversion in the Special Notes.
For RX64M, RX71M, and RX65N, the code has been modified
to set unit 0 as the unit to be synchronized with and also
generate an error when the D/A A/D synchronous conversion
is enabled.

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas.
For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as
well as any technical updates that have been issued for the products.

1. Handling of Unused Pins
Handle unused pins in accordance with the directions given under Handling of Unused Pins in the
manual.
 The input pins of CMOS products are generally in the high-impedance state. In operation with

an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of
LSI, an associated shoot-through current flows internally, and malfunctions occur due to the
false recognition of the pin state as an input signal become possible. Unused pins should be
handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
 The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of
pins are not guaranteed from the moment when power is supplied until the reset process is
completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset
function are not guaranteed from the moment when power is supplied until the power reaches
the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
 The reserved addresses are provided for the possible future expansion of functions. Do not

access these addresses; the correct operation of LSI is not guaranteed if they are accessed.
4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become
stable. When switching the clock signal during program execution, wait until the target clock signal
has stabilized.
 When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock
signal. Moreover, when switching to a clock signal produced with an external resonator (or by
an external oscillator) while program execution is in progress, wait until the target clock signal is
stable.

5. Differences between Products
Before changing from one product to another, i.e. to a product with a different part number, confirm
that the change will not lead to problems.
 The characteristics of Microprocessing unit or Microcontroller unit products in the same group

but having a different part number may differ in terms of the internal memory capacity, layout
pattern, and other factors, which can affect the ranges of electrical characteristics, such as
characteristic values, operating margins, immunity to noise, and amount of radiated noise.
When changing to a product with a different part number, implement a system-evaluation test
for the given product.

Notice

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by

you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other disputes involving patents, copyrights, or other intellectual property rights of third parties, by or

arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawing, chart, program, algorithm, application

examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages

incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics products.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the

product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (space and undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas

Electronics disclaims any and all liability for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas

Electronics.

6. When using the Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the

reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat radiation

characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions or failure or accident arising out of the use of Renesas Electronics products beyond such specified

ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics such as the occurrence of failure at a

certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please ensure to implement safety measures to guard them

against the possibility of bodily injury, injury or damage caused by fire, and social damage in the event of failure or malfunction of Renesas Electronics products, such as safety design for hardware and

software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures by your own responsibility as warranty

for your products/system. Because the evaluation of microcomputer software alone is very difficult and not practical, please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please investigate applicable laws and

regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive carefully and sufficiently and use Renesas Electronics products in compliance with all

these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws

or regulations. You shall not use Renesas Electronics products or technologies for (1) any purpose relating to the development, design, manufacture, use, stockpiling, etc., of weapons of mass destruction,

such as nuclear weapons, chemical weapons, or biological weapons, or missiles (including unmanned aerial vehicles (UAVs)) for delivering such weapons, (2) any purpose relating to the development,

design, manufacture, or use of conventional weapons, or (3) any other purpose of disturbing international peace and security, and you shall not sell, export, lease, transfer, or release Renesas Electronics

products or technologies to any third party whether directly or indirectly with knowledge or reason to know that the third party or any other party will engage in the activities described above. When exporting,

selling, transferring, etc., Renesas Electronics products or technologies, you shall comply with any applicable export control laws and regulations promulgated and administered by the governments of the

countries asserting jurisdiction over the parties or transactions.

10. Please acknowledge and agree that you shall bear all the losses and damages which are incurred from the misuse or violation of the terms and conditions described in this document, including this notice,

and hold Renesas Electronics harmless, if such misuse or violation results from your resale or making Renesas Electronics products available any third party.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2017 Renesas Electronics Corporation. All rights reserved.
Colophon 6.0

(Rev.3.0-1 November 2016)

	1. Overview
	2. API Information
	2.1 Hardware Requirements
	2.2 Hardware Resource Requirements
	2.2.1 DA, DAa, R12DA, R12DAA
	2.2.2 GPIO

	2.3 Software Requirements
	2.4 Limitations
	2.5 Supported Toolchains
	2.6 Header Files
	2.7 Integer Types
	2.8 Configuration Overview
	2.9 Code Size
	2.10 API Data Structures
	2.11 Adding Driver to Your Project

	3. API Functions
	3.1 Summary
	3.2 Return Values
	3.3 R_DAC_Open()
	3.4 R_DAC_Close()
	3.5 R_DAC_Write()
	3.6 R_DAC_Control()
	3.7 R_DAC_GetVersion()

	4. Demo Projects
	4.1 dac_demo_rskrx113
	4.2 dac_demo_rskrx231
	4.3 dac_demo_rskrx64m
	4.4 dac_demo_rskrx71m
	4.5 Adding a Demo to a Workspace

	Related Technical Updates
	Website and Support
	Revision Record
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

